Mini-Tracks

What is a mini-track (my definition)

Use cases

Mini-track design

Use strategies

Status

What is a mini-track?

- A self-contained persistent form of a track
 - Hits and other event data all contained in one object
 - No dependence on existing Raw or Reco quantities
- A normal TrkRecoTrk reconstituted from this compact persistent data
 - Kalman fit representation
 - Multiple mass hypo fits
 - Access to hit-on-track (Hot) information (residuals, ...)
- An track interface which maximizes efficiency
 - Cache commonly-accessed values
 - ▲ Default PID helix parameters at origin, ...
 - Compute expensive information only on demand
 - ▲ Hit residuals, ...
 - Lots of flexibility and tunability

Mini-track use cases

- Alignment calculation
 - Store SVT Hots plus parameters at DCH
 - ▲ Minimum data content needed to compute alignment
 - Store only those tracks useful for alignment
- Environment updating
 - Tracks can be refit with new environment constants
 - ▲ Alignment, calibration, material model, Bfield map,...
 - Could be used to generate micro (reprocessing source)
- Event display
 - Display full trajectory and hits in space
 - Study physics and detector performance
- Detailed analysis
 - All mass hypothesis fits available
 - Add/remove hits based on vertexing or B reconstruction

Mini-track persistence design

- Compact storage of helix fit information
 - 5 Parameters and errors
 - **■** Full Correlation matrix
 - Flight range, Mass Hypothesis, fit chisq prob.
 - Total size of 36 bytes
 - ▲ Micro 'track' (BtaFitParamsP_001) ~80 bytes, less information
- Compact version of SVT Hot
 - Contains all position, time, and PID information
 - 8bytes/HOT, ~500 bytes/hadronic event
- Compact version of DCH Hot
 - Contains all position, time, and PID information
 - (preliminary) 8bytes/HOT, ~2KBytes/hadronic event
- Can store any combo of helices and Hots

Possible exploitation strategies

- Store helix for default hypo at origin + Hots
 - Can answer most physics questions without refitting
 - other hypos, outer/interior fits, residuals on demand
- Store DCH fit at support tube and SVT Hot
 - Svt local alignment
- Store helix at first, last hit for N most likely hypos
 - Can extrapolate in to the origin, out to Dirc, Emc, Ifr
 - ▲ Full Material model and Bfield map
 - Fit of long-lived particles will be correct (as we can)
- Any combination/mixture in between
 - Most common helices + Svt Hots
 - **...**

Status

- Svt mini-hot complete
 - Released in 9.8.0
 - For details, see recoTracking/384.html
- Dch mini-hot Design complete
 - Will be ready for 9.9.0
 - For details, see http://www.pd.infn.it/~stroili/mini-DB.pdf
- Helix packing complete
 - Will be ready for 9.9.0
 - For details, see recoTracking/401.html
- Objectivity design complete
 - Preliminary version may be released in 9.9.0
- Transient design still under development
 - Full functionality will not be ready until December

Conclusions

- A new way of storing tracks is under development
 - A compact persistent class can store any combination of Hots and fit parameters
 - The interface will provide the full Kalman fit information
 - ▲ Multiple mass hypothesis fits
 - ▲ Optimal helix parameters at origin, dirc, K0_s decay point, ...
- Homework for AWGs and physics management
 - What configuration(s) would best balance the needs of efficiency (space and time) against accuracy?
 - Should we replace the micro 'track'?
 - ▲ Mini-track has more compact information, Kalman interface
 - ▲ Would require re-implementation of PID-track interface
 - ◆ Use of mass-hypo specific fits
 - ◆ Compute angles and momentum at dirc and emc